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Rare Missense and Synonymous Variants
in UBE1 Are Associated
with X-Linked Infantile Spinal Muscular Atrophy

Juliane Ramser,1 Mary Ellen Ahearn,2 Claus Lenski,1 Kemal O. Yariz,2 Heide Hellebrand,1

Michael von Rhein,3 Robin D. Clark,4 Rita K. Schmutzler,5 Peter Lichtner,6 Eric P. Hoffman,7

Alfons Meindl,1,* and Lisa Baumbach-Reardon2

X-linked infantile spinal muscular atrophy (XL-SMA) is an X-linked disorder presenting with the clinical features hypotonia, areflexia,

and multiple congenital contractures (arthrogryposis) associated with loss of anterior horn cells and infantile death. To identify the

XL-SMA disease gene, we performed large-scale mutation analysis in genes located between markers DXS8080 and DXS7132

(Xp11.3–Xq11.1). This resulted in detection of three rare novel variants in exon 15 of UBE1 that segregate with disease: two missense

mutations (c.1617 G/T, p.Met539Ile; c.1639 A/G, p.Ser547Gly) present each in one XL-SMA family, and one synonymous C/T

substitution (c.1731 C/T, p.Asn577Asn) identified in another three unrelated families. Absence of the missense mutations was dem-

onstrated for 3550 and absence of the synonymous mutation was shown in 7914 control X chromosomes; therefore, these results

yielded statistical significant evidence for the association of the synonymous substitution and the two missense mutations with XL-SMA

(p¼ 2.416 3 10�10, p¼ 0.001815). We also demonstrated that the synonymous C/T substitution leads to significant reduction of UBE1

expression and alters the methylation pattern of exon 15, implying a plausible role of this DNA element in developmental UBE1 expres-

sion in humans. Our observations indicate first that XL-SMA is part of a growing list of neurodegenerative disorders associated with

defects in the ubiquitin-proteasome pathway and second that synonymous C/T transitions might have the potential to affect gene

expression.
Motor neuron diseases (MND) represent a heterogeneous

group of disorders with respect to clinical presentation, dis-

ease course, genetic identity, underlying mutations, and

etiologies. They are generally characterized by weakness

due to muscle atrophy and/or spastic paralysis reflecting

the selective involvement of lower and/or upper motor

neurons. The most common childhood motor neuron dis-

eases are the autosomal-recessive (AR)-proximal spinal mus-

cular atrophies (AR-SMA) associated with deterioration

and destruction of anterior horn cells1 (MIM #253300,

MIM #253550, MIM #253400). These disorders, which are

caused by mutations in the SMN1 gene (MIM *600354,

GenBank accession number NM_000344), are often fatal,

leading to progressive symmetrical limb and trunk paraly-

sis and severe muscle atrophy. Considerable clinical het-

erogeneity has been reported.2,3 It has long been suggested

that a distinct X-linked SMA syndrome exists, similar to

Type I SMA (MIM #253300), but associated with congeni-

tal contractures (and fractures). This syndrome may be

related to arthrogryposis (ARGY), a complex clinical phe-

notype involving multiple congenital contractures and

limited movement of multiple body areas, more often dis-

tal than proximal.4 Over the last decade, we have come

to appreciate a previously unrecognized form of SMA

(X-linked infantile spinal muscular atrophy [XL-SMA] [MIM

%301830]), which indeed presents with the clinical char-
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acteristics of hypotonia, areflexia, and multiple congenital

contractures (arthrogryposis) associated with loss of ante-

rior horn cells and death in infancy.5 Based on our cumu-

lative experience, we have constructed a list of the defining

features and laboratory findings associated with XL-SMA.

These can be described as follows: congenital hypotonia;

arthrogryposis 5 bone fractures; dysmorphic features, in-

cluding myopathic facies and digital contractures; death

of at least one affected within 1 year of birth, due to respi-

ratory distress; family history of miscarriages/spontaneous

abortions; genital abnormality (undescended testes); mus-

cle biopsy confirmation of neurogenic atrophy; electro-

myogram (EMG) indicative of denervation; and autopsy

showing anterior horn cell loss. In 1995, we defined a peri-

centromeric candidate interval for XL-SMA in Xp11.3–

Xq11.2 with positive LOD scores between markers MAOB

and DXS991.6 Through further analysis of additional

XL-SMA families via numerous microsatellite and SNP

markers, we recently confirmed and slightly narrowed

this linkage interval to an approximately 20.4 Mb region

between markers DXS8080 and DXS7132 in Xp11.3–

Xq11.1.5 To identify the underlying disease gene, we now

established a gene catalog in the refined interval and per-

formed mutation screening in 123 genes by applying a

direct sequencing approach. This approach was carried

out on genomic DNA including exons and the adjacent
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Table 1. Detected Mutations in Six Screened XL-SMA Families

XL-SMA Families Origin Detected Mutation

Mutation-Negative

X Chromosomes

Family #2 N. American/white c.1731 C/T p.Asn577Asn 7914

Family #4 N. American/white c.1731 C/T p.Asn577Asn 7914

Family #5 N. American/white c.1617 G/T p.Met539Ile 3550

Family #7 N. American/white c.1639 A/G p.Ser547Gly 3550

Family #9 Mexican No mutation -

Family #15 Thai c.1731 C/T p.Asn577Asn 7914

A total of 3550 control X chromosomes were screened for the three mutations by DHPLC or a direct sequencing approach. Out of these, 3300 X chromosomes

were derived from 1650 white females and 250 X chromosomes from healthy white males. DHPLC analysis (WAVE, Transgenomics) was performed under the

following conditions: gradient of B buffer, 58%–68%; running temperature, 62�C; forward primer, TAA GTG AGC TTT GTT CCC C; reverse primer, CAG ATG CCT

GGC CTC TTT C. Another 4364 X chromosomes were screened for the synonymous C/T substitution by MALDI-TOF mass spectrometer analysis. Out of these,

4350 X chromosomes were derived from 2175 white females and 14 X chromosomes from healthy white males. MALDI-TOF analysis (Sequenom MassArray

system) was performed by the homogeneous mass extension (hME) process for producing primer extension products.21 Assays were designed with the

SpectroDesigner software. Primer sequences are available upon request.
intronic sequences and on cDNA. DNA and RNA were

extracted from blood samples, fibroblast cell lines, and im-

mortalized lymphoblastoid cell lines. The screening was

performed in a total of six XL-SMA families. All human

subject activities occurred in compliance with an active

human subject protocol, which has institutional approval.

Patient’s identification and recruitment are described in

detail by Dressman et al. (2007).5 In brief, all families

were ascertained based on affected males showing diagnos-

tic features described above. Patients meeting study criteria

were recruited and consent was obtained by standard pro-

cedures. These screening efforts resulted not only in the

detection of a number of known polymorphisms in several

genes (data not shown), but importantly in the detection of

two novel missense mutations (c.1617 G/T, p.Met539Ile;

c.1639 A/G, p.Ser547Gly) in two families (families #5 and

#7) and a novel synonymous C/T substitution (c.1731

C/T, p.Asn577Asn) in the index patients of another three

families (families #2, #4, #15). All aberrations are located in

exon 15 of the UBE1 gene (MIM *314370; GenBank acces-

sion numbers NM_003334 and NM_153280) (Table 1, Fig-

ures 1 and 2). Sequences of used primer pairs for UBE1

screening are available on request. Interestingly, the gene

is located within a 2.4 Mb interval described as a potential

hotspot for neurogenetic disorders.7 UBE1 codes for the
The A
ubiquitin-activating enzyme E1 that catalyzes in the ubiq-

uitin-proteasome system (UPS), the first step in ubiquitin

conjugation to mark cellular proteins for degradation.8,9

The UPS, as a ubiquitin-dependent proteolysis system, is a

fundamental cellular mechanism for regulating protein

activity.10 The three mutations segregate with disease in

the families (Figure 1) and were shown by DHPLC analysis

(WAVE, Transgenomics) or direct sequencing approaches

to be absent in 3550 control X chromosomes (Table 1).

Additionally, 4364 control X chromosomes were nega-

tively screened for the synonymous C/T substitution

by MALDI-TOF mass spectrometer analysis (Sequenom

MassArray system), and therefore a total of 7914 X chro-

mosomes were shown to be negative for this alteration

(Table 1). Strictly anonymized DNA of unrelated control

individuals was provided by the German Breast Cancer

Consortium and the UM/MHRI Cardiovascular Genetics

Laboratory in Miami.

With two-sided Fisher’s exact tests as implemented in R

software (release 2.4.1), these numbers yielded statistical

significant evidence for an association of the synonymous

substitution and the two missense mutations with XL-SMA

(synonymous mutation: p ¼ 2.416 3 10�10, OR ¼ infinite,

95% confidence interval 693.15 to infinite; missense muta-

tions: p ¼ 0.001815; OR ¼ infinite, 95 confidence interval
Figure 1. Pedigree of XL-SMA Family #2
As described by Kobayashi et al.6 Affected
males are indicated by black boxes, obli-
gate carriers with a dotted circle. The index
patient is marked with an arrow. The
synonymous C/T substitution (c.1731
C/T, p.Asn577Asn) was shown by direct
sequencing approaches to segregate with
disease in the family.
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14.10 to infinite). Therefore, we postulate mutations in

UBE1 to be the underlying disease causing genetic defects

for XL-SMA.

By a systematic analysis of human genetic variations, it

was determined recently that up to 70% of low-frequency

missense alleles are deleterious, suggesting that the low

allele frequency of a rare amino acid variant can, by itself,

serve as a predictor of its functional significance.11 More-

over, the two missense mutations detected in families #5

and #7 are located in a part of the transcript that codes

for a highly conserved protein domain (Figure 3) that

forms interactions with gigaxonin.12 Allen and colleagues

describe gigaxonin as a member of the BTB/kelch super-

family that is important for axonal structure and neuronal

maintenance. By building complexes with UBE1, gigaxo-

nin controls the degradation of ubiquitin-mediated micro-

tubule-associated protein 1B (MAP1B). Because it interacts

with UBE1, gigaxonin was suggested to function as a scaf-

fold protein in the ubiquitin-proteasome system (UPS).

The authors showed that overexpression of gigaxonin

leads to enhanced degradation of MAP1B-LC, whereas

overexpression of MAP1B in wild-type cortical neurons

leads to cell death.12 Aberrations of the amino acid se-

quence in the interaction domain of UBE1, as caused by

Figure 2. Sequence Alterations Detected in Exon 15 of the
UBE1 Gene
(A) The synonymous c.1731 C/T substitution. Top, wild-type
sequence with the ‘‘C’’ highlighted in blue; center, heterozygote
status in an obligate carrier; bottom, C/T substitution in a patient
with the ‘‘T’’ highlighted in gray.
(B) The c.1617 G/T substitution, p.Met539Ile in family #5. Top,
wild-type sequence; center, heterozygote status of an obligate
carrier; bottom, G/T substitution in a patient.
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the two detected missense mutations, may well lead to a

disturbed complex building with gigaxonin and as a conse-

quence, to impaired MAP1B degradation. Thus, an increase

of MAP1B protein may enhance neuronal cell death with

negative consequences also in motorneurons.

In contrast to the two missense mutations, the synony-

mous C/T substitution detected in families #2, #4, and

#15 does not alter the protein sequence, so we first per-

formed quantitative PCR experiments in lymphoblastoid

and fibroblastoid cell lines of two index patients, respec-

tively (families #2 and #4) to investigate whether the alter-

ation may influence UBE1 expression in these cells. These

analyses revealed no expression differences in the two pa-

tients’ cell lines as compared to cell lines from healthy con-

trol individuals. The same result was obtained by western

blot analysis. Also, no differences in expression were de-

tectable in a cell line of the index patient of family #4 as

compared to healthy controls (data not shown). However,

as has been reported, UBE1 displays significant differences

in gene expression depending on whether it is analyzed

in native tissue or in cell cultures derived from the same

biopsies.13 Therefore, we performed real-time PCR in white

blood cells of the still living index patient of family #15.

PCR amplification and detection was performed on a

Sequence Detection System (ABI PRISM 7000, Applied Bio-

systems) applying the standard two-step protocol (45 cy-

cles, annealing temperature 61�C) recommended by ABI.

The forward primer (CCC TGG GAT GTC ACG AAG TT)

was located at exon boundary 14–15, and the reverse

primer (ATG CGG GCA TCC ACG TT) at exon boundary

15–16. The specific probe (FAM-TCC GGG TGA CAA GCC

ACC AGA-TMR) was located in exon 15 (TIBMOLBIOL).

The genes for 18sRNA and HPRT were used as references

(ABI). These analyses revealed a reduction of expression

in the patient to one-fifth as compared to blood cells of

three healthy controls, thereby implying an impact of the

synonymous substitution on gene expression. The conse-

quence of this substitution in the patients might be even

more prominent in developing spinal cord, in which UBE1

was shown to be highly expressed (P. Tsoulfas and P.M.

Wood, personal communication).

Although we could not detect any visible alternative

splice variants on agarose gels, we could not rule out that

the detected reduction of expression of the UBE1 wild-

type transcript was caused by aberrant splicing processes.

For this reason, we applied the in silico ESEfinder tool (re-

lease 2.0) to determine whether the synonymous C/T ex-

change may alter existing exonic splicing enhancer motifs

or introduce a novel one.14 This analysis revealed that the

exchange leads, in close proximity to another splice en-

hancer motif ‘‘GGACAACG,’’ to the generation of a second

putative exonic splice enhancer motif ‘‘TGTGGA.’’ This

new motif could be recognized by the SRp55 protein,

which belongs to a family of highly conserved splicing

factors that bind to ESEs and are able to promote exon def-

inition.14 It seems possible that the introduction of an

additional splice enhancer motif results in a competitive
2008



Figure 3. Genomic Structure of the UBE1
Gene and Amino Acid Conservation of Exon
15 in Several Species
(A) Yellow boxes represent the 26 exons of UBE1
with an alternative exon 1a. The gene structure
was obtained from publicly available databases
(UCSC Genome Bioinformatics). Translation start
in exon 2 is indicated with a black arrow. Five ex-
onic CpG islands were detected by using in silico
CpG island prediction tools (MethPrimer).
(B) Position of CpG island and the methylated CpG
dinucleotides in exon 15 are represented by green
boxes. In index patients of three XL-SMA families,
one C methylation less is observed resulting from
the C/T exchange (red box). For bisulphite geno-
mic sequencing, genomic DNA was isolated from
cell lines or whole blood by means of the DNA
Extraction Mini Kit (QIAGEN). The bisulfite modifi-
cation reaction was performed with the EZ DNA
Methylation Kit (HISS Diagnostics), and the bisul-

fite-treated DNA was amplified with primer pair (1f, 50-GGT GAA TGT ATA AAT AAG TGA GT-30; 1r, 50-ACA CCC CTC TTA ATA TAT ACA C-30) and
subsequently sequenced with Big Dye kits (Perkin Elmer). The positions of the three detected mutations in exon 15 are marked with red stars.
(C) Exon 15 represents parts of the transcript that codes for a highly conserved protein domain that form interactions with gigaxonin. Amino
acid exchanges in the different species are highlighted in blue.
inhibition of the two ESEs and thus alters the splicing pro-

cess in such a manner that the amount of wild-type tran-

script becomes reduced in favor of unstable, alternative

transcript variants.

We also considered and analyzed an alternative explana-

tion for the observed reduced UBE-1 expression seen in

association with the synonymous C/T substitution. As

shown in Figure 3, bisulfite genomic sequencing revealed

that the substitution involves one CpG dinucleotide out

of 13 CpGs that are methylated in healthy controls. These

13 CpGs form a 223 bp large CpG island that is mainly

located in exon 15 and partly in intron 15. Because of the

C/T exchange, the patients exhibit only 12 methylated

cytosins (Figure 3). DNA methylation is described to be

essential for normal mammalian embryonic development

because it alters the appearance of the major groove of the

DNA to which DNA binding proteins can bind.15,16 Meth-

ylation changes the interactions between these proteins

and the DNA, which leads to alterations in chromatin

structure and either to a decrease or an increase in the

rate of transcription. Whereas methylation of a promoter

CpG island leads to the binding of methylated CpG bind-

ing proteins and transcription repressors to block tran-

scription initiation, methylation of silencer and so-called

insulator elements impede the binding of cognate-binding

proteins that potentially abolishes their repressive activi-

ties on gene expression.16,17 In the case of UBE1, one may

speculate, that the detected methylated CpG island in

exon 15 harbors an element that acts in an insulator-like

manner. Although we found the promoter site of UBE1 to

be unmethylated (data not shown), the methylation of this

putative element might prevent the binding of specific

proteins that act as transcription repressors by blocking

specific transcription enhancer elements. In our favored
The Am
model (Figure 4), the observed C/T aberration would alter

the required methylation pattern at this site, and as a con-

sequence, the specific transcription repressors would bind

and possibly block specific transcription enhancers neces-

sary for required UBE1 expression.

Taken together, the presented data provide strong evi-

dence that the rare missense and synonymous mutations

detected in exon 15 of UBE1 are associated with X-linked

spinal muscular atrophy (XL-SMA). We strongly suggest

that an alteration of the UBE1-mediated ubiquitin-

proteasome system results in disturbed neuronal/motor-

neuron development, resulting in the XL-SMA disease

phenotype.

Ciechanover stated in his Nobel lecture in 2004 about

the ubiquitin-proteasome system that ‘‘with the multitude

of substrates targeted and processes involved, it is not sur-

prisingly that aberrations in the ubiquitin-proteasome

pathway have been implicated in the pathogenesis of

many diseases, among them certain malignancies and neu-

rodegenerations.’’10 A growing list of neurodegenerative

disorders has been associated with primary or secondary

defects in ubiquination, primarily in the ubiquitin-pro-

teasome pathway.18 For example, mutations in Parkin

(PARK2), an E3 ligase (MIM *602544), or the ubiquitin car-

boxy-terminal hydrolase L1 (UCHL1 [MIMþ191342]) have

been demonstrated in patients with Parkinson’s disease

(PDJ, PD [MIM #600116, MIM #168600]).18 Very recently,

mutations in the CUL4B gene (MIM *300304), encoding

an E3 ligase subunit, were found to be causative for an

X-linked form of mental retardation associated with neuro-

logical features like tremor, seizures, ataxia, and wasting

of calf muscles (MIM #300354).19 To date, pathogenic mu-

tations in human UBE1 have not been reported and we

report here the first ones for this gene, associated with an
erican Journal of Human Genetics 82, 188–193, January 2008 191



Figure 4. Model for Suggested Tran-
scription Regulatory Element in Exon
15 of UBE1
(A) In the wild-type, the CpG island in exon
15 is fully methylated (symbolized by four
green cylinders), which prevents the bind-
ing of proteins (red diamond) that block
a specific transcription enhancer element,
thus allowing a putative enhancer to stim-
ulate the transcription.
(B) In the XL-SMA patient harboring the
synonymous C/T exchange, the CpG is-
land in exon 15 is only partly methylated
(symbolized by a white cylinder among
three green cylinders), thus allowing the
proteins to bind and as a consequence
the transcription enhancer is blocked.
early-onset neurodegenerative disorder involving lower

motor neurons. Moreover, the knowledge that SMN, the

protein affected in AR-SMA, is also degraded via the ubiq-

uitin-proteasome pathway may well provide important

clues into our understanding of common disease mecha-

nisms that produce anterior horn cell death in early child-

hood, as well as provide hope for design of therapeutic

interventions for these biologically related, but genetically

distinct, fatal childhood disorders.20
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Web Resources

The URLs for data presented herein are as follows:

ESEfinder, http://rulai.cshl.edu/tools/ESE2/

GenBank, http://www.ncbi.nlm.nih.gov/Genbank/

MethPrimer, http://www.urogene.org/methprimer/

NCBI SNP database, http://www.ncbi.nlm.nih.gov/SNP/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/OMIM/ (for SMA Type I, II, and III, XL-SMA, UBE1,

PDJ, PD, PARK2, UCHL1, and SMN1).

R-Project (language and environment for statistical computing

and graphics; release 2.4.1.), http://www.r-project.org

UCSC Genome Bioinformatics, http://genome.ucsc.edu/
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